
Stephen Checkoway

Programming Abstractions
Lecture 35: Call With Current Continuation

Write some more CPS

(collatz-k n k): CPS version of collatz

‣ Two recursive cases to handle, must call k in both

(fib-k n k): CPS version of fib

‣ Implement the (very slow) recursive version but using CPS

‣ Tricky because we need to make two recursive calls

‣ Continuation for the first recursive call should make the second recursive call

‣ Continuation for the second recursive call should add the results of both

recursive calls together and pass that to k

From earlier

A continuation is determined by the expression's evaluation context at run time

(define (fact n)

 (cond [(zero? n) 1]

 [else (* n (fact (sub1 n)))]))

At the point 1 is evaluated in the call (fact 0), the continuation is □

At the point 1 is evaluated in the call (fact 1), the continuation is (* 1 □)

At the point 1 is evaluated in the call (fact 2), the continuation is 

(* 2 (* 1 □))

Key: The continuation is all the rest of computation

The current continuation

At every point in a computation the current continuation is the continuation of

whatever expression is currently being evaluated

The current continuation is constantly changing

Example

(define (fact n)

 (cond [(zero? n) 1]

 [else (* n (fact (sub1 n)))]))

(fact 3)

redex current continuation value

(fact 3) □ —

(zero? 3) (cond [□ 1][else (* 3 (fact (sub1 3)))]) #f

(* 3 (fact (sub1 3))) □ —

(fact (sub1 3)) (* 3 □) —

Example: continued

redex current continuation value

(fact 3) □ —

(zero? 3) (cond [□ 1][else (* 3 (fact (sub1 3)))]) #f

(* 3 (fact (sub1 3))) □ —

(fact (sub1 3)) (* 3 □) —

(sub1 3) (* 3 (fact □)) 2

(fact 2) (* 3 □) —

(zero? 2) (* 3 (cons [□ 1][else (* 2 (fact (sub1 2)))]) #f

(* 2 (fact (sub1 2))) (* 3 □) —

(fact (sub1 2)) (* 3 (* 2 □)) —

Example: continued

redex current continuation value

(fact (sub1 2)) (* 3 (* 2 □)) —

(sub1 2) (* 3 (* 2 (fact □))) 1

(fact 1) (* 3 (* 2 □)) —

(zero? 1) (* 3 (* 2 (cons [□ 1][else (* 1 (fact (sub1 1)))])) #f

(* 1 (fact (sub1 1))) (* 3 (* 2 □)) —

(fact (sub1 1)) (* 3 (* 2 (* 1 □))) —

(sub1 1) (* 3 (* 2 (* 1 (fact □)))) 0

(fact 0) (* 3 (* 2 (* 1 □))) —

(zero? 0) (* 3 (* 2 (* 1 (cons [□ 1][else (* 0 (fact (sub1 0)))]))) #t

Example: continued

redex current continuation value

(zero? 0) (* 3 (* 2 (* 1 (cons [□ 1][else (* 0 (fact (sub1 0)))]))) #t

1 (* 3 (* 2 (* 1 □))) 1

(* 1 1) (* 3 (* 2 □)) 1

(* 2 1) (* 3 □) 2

(* 3 2) □ 6

Example: simplified
Let's just look at the recursive calls

redex current continuation value

(fact 3) □ —

(fact 2) (* 3 □) —

(fact 1) (* 3 (* 2 □)) —

(fact 0) (* 3 (* 2 (* 1 □))) 1

(* 1 1) (* 3 (* 2 □)) 1

(* 2 1) (* 3 □) 2

(* 3 2) □ 6

Example 2: With an accumulator

(define (fact-a n acc)

 (cond [(zero? n) acc]

 [else (fact-a (sub1 n) (* n acc))]))

(fact-a 3 1)

redex current continuation value

(fact-a 3 1) □ —

(fact-a 2 3) □ —

(fact-a 1 6) □ —

(fact-a 0 6) □ 6

Tail-recursive calls

In the first example, the current continuation changes at each recursive call

In the second example, the current continuation doesn't change at the recursive

calls

‣ It does fluctuate a bit as sub-expressions like (* n acc) are evaluated

Current continuation of general recursion grows with each recursive call

Current continuation of tail-recursion remains constant with each recursive call

call-with-current-continuation

call/cc

Call with current continuation

Scheme gives the programmer programatic access to the current continuation

(call-with-current-continuation proc)  
(call/cc proc)

‣ proc is a 1-argument procedure

‣ proc is called with the current continuation as an argument

Call/cc
(call/cc (λ (k) body))

When this is evaluated

‣ it calls the λ with the current continuation as the argument

‣ within body, calling k with a value, (k value), immediately returns from

call/cc with value as the result

‣ if k is not called in body, the return from call/cc has the value of body

Examples

(call/cc (λ (k) (k 42)))

k is called with value 42 => result is 42

(call/cc (λ (k) 10))

k is not called, so the result just the body, namely 10

Less simple example

(call/cc (λ (k) (* 5 3 (k 2))))

k is called with the value 2, so the result is 2

What is the value of this expression?

(+ 1 (call/cc (λ (k)

 ((λ (x) (* 20 (k x)))

 3))))

A. 3

B. 4

C. 60

D. 61

E. 81

17

Escaping from recursion

Remember our example summing elements of a list
(define (sum-cc lst)

 (call/cc

 (λ (k)

 (letrec ([f (λ (lst)

 (cond [(empty? lst) 0]

 [(not (number? (first lst))) (k #f)]

 [else (+ (first lst) (f (rest lst)))]))])

 (f lst)))))

(sum-cc '(1 2 3 4)) => 10

(sum-cc '(1 2 steve 4)) => #f

Revisiting index-of with a fold

(define (index-of x lst)

 (call/cc (λ (k)

 (foldl (λ (y idx)

 (if (equal? x y)

 (k idx) ; Return idx from call/cc

 (add1 idx)))

 0

 lst)

 -1))) ; Return -1 from call/cc

(index-of 4 '(0 1 4 2 3 4 5)) ; returns 2

We can store the current continuation

(define exit-k 0)

(call/cc (λ (k) (set! exit-k k)))

(define (prod-cc lst)

 (cond [(empty? lst) 1]

 [(not (number? (first lst))) (exit-k #f)]

 [else (* (first lst) (prod-cc (rest lst)))]))

(prod-cc '(1 2 3 4 #t 6)) ; returns #f

Continuations are deeply weird

(define A 0)

(set! A (call/cc identity))

(define B A)

This defines A and B to be the continuation (set! A □)

If I call (A 10), it runs that continuation, setting A to be 10

If I call (B 25), it runs the continuation again, setting A to be 25

There is so much more to this

(call-with-composable-continuation proc)

(dynamic-wind pre-thunk value-thunk post-thunk)

prompts

aborts

…

